>
Classical and Multilinear Harmonic Analysis: Volume 1 (Cambridge Studies in Advanced Mathematics)

Classical and Multilinear Harmonic Analysis: Volume 1 (Cambridge Studies in Advanced Mathematics)

  • £27.49
  • Save £24


Camil Muscalu, Wilhelm Schlag
Cambridge University Press, 1/31/2013
EAN 9780521882453, ISBN10: 0521882451

Hardcover, 387 pages, 23.4 x 15.5 x 2.4 cm
Language: English
Originally published in English

This two-volume text in harmonic analysis introduces a wealth of analytical results and techniques. It is largely self-contained and will be useful to graduate students and researchers in both pure and applied analysis. Numerous exercises and problems make the text suitable for self-study and the classroom alike. This first volume starts with classical one-dimensional topics: Fourier series; harmonic functions; Hilbert transform. Then the higher-dimensional Calderón–Zygmund and Littlewood–Paley theories are developed. Probabilistic methods and their applications are discussed, as are applications of harmonic analysis to partial differential equations. The volume concludes with an introduction to the Weyl calculus. The second volume goes beyond the classical to the highly contemporary and focuses on multilinear aspects of harmonic analysis: the bilinear Hilbert transform; Coifman–Meyer theory; Carleson's resolution of the Lusin conjecture; Calderón's commutators and the Cauchy integral on Lipschitz curves. The material in this volume has not previously appeared together in book form.

Preface
Acknowledgements
1. Fourier series
convergence and summability
2. Harmonic functions, Poisson kernel
3. Conjugate harmonic functions, Hilbert transform
4. The Fourier Transform on Rd and on LCA groups
5. Introduction to probability theory
6. Fourier series and randomness
7. Calderón–Zygmund theory of singular integrals
8. Littlewood–Paley theory
9. Almost orthogonality
10. The uncertainty principle
11. Fourier restriction and applications
12. Introduction to the Weyl calculus
References
Index.