>
Numerical Relativity: Solving Einstein's Equations on the Computer

Numerical Relativity: Solving Einstein's Equations on the Computer

  • £44.99
  • Save £24


Thomas W. Baumgarte, Stuart L. Shapiro
Cambridge University Press
Edition: Illustrated, 6/24/2010
EAN 9780521514071, ISBN10: 052151407X

Hardcover, 720 pages, 24.9 x 19.3 x 3.8 cm
Language: English

Aimed at students and researchers entering the field, this pedagogical introduction to numerical relativity will also interest scientists seeking a broad survey of its challenges and achievements. Assuming only a basic knowledge of classical general relativity, the book develops the mathematical formalism from first principles, and then highlights some of the pioneering simulations involving black holes and neutron stars, gravitational collapse and gravitational waves. The book contains 300 exercises to help readers master new material as it is presented. Numerous illustrations, many in color, assist in visualizing new geometric concepts and highlighting the results of computer simulations. Summary boxes encapsulate some of the most important results for quick reference. Applications covered include calculations of coalescing binary black holes and binary neutron stars, rotating stars, colliding star clusters, gravitational and magnetorotational collapse, critical phenomena, the generation of gravitational waves, and other topics of current physical and astrophysical significance.

Preface
Suggestions for using this book
1. General relativity preliminaries
2. The 3+1 decomposition of Einstein's equations
3. Constructing initial data
4. Choosing coordinates
the lapse and shift
5. Matter sources
6. Numerical methods
7. Locating black hole horizons
8. Spherically symmetric spacetimes
9. Gravitational waves
10. Collapse of collisionless clusters in axisymmetry
11. Recasting the evolution equations
12. Binary black hole initial data
13. Binary black hole evolution
14. Rotating stars
15. Binary neutron star initial data
16. Binary neutron star evolution
17. Binary black hole-neutron stars
initial data and evolution
18. Epilogue
Appendixes
References
Index.

'Over the last five years, there have been impressive advances in numerical relativity. It has now become a central area in the fast growing field of gravitational wave physics. These tools have played an important role also in the theory of critical phenomena associated with gravitational collapse, loop quantum cosmology and the discussion of quantum black holes and black branes. The book by Baumgarte and Shapiro provides an excellent introduction to the subject covering both, mathematical aspects and numerical techniques. The authors are world leaders in numerical relativity and their contributions have shaped neutron star simulations, the new frontier of this field. This book will soon become the standard advanced text for younger researchers entering the field and will also serve as the authoritative reference for senior researchers in numerical relativity and neighboring fields.' Abhay Ashtekhar, Director, Institute for Gravitation and the Cosmos, Pennsylvania State University