>
Principles of Computational Modelling in Neuroscience

Principles of Computational Modelling in Neuroscience

  • £21.99
  • Save £29


David Sterratt, Bruce Graham, Dr Andrew Gillies, David Willshaw
Cambridge University Press, 6/30/2011
EAN 9780521877954, ISBN10: 0521877954

Hardcover, 404 pages, 24.9 x 19.1 x 2.3 cm
Language: English

The nervous system is made up of a large number of interacting elements. To understand how such a complex system functions requires the construction and analysis of computational models at many different levels. This book provides a step-by-step account of how to model the neuron and neural circuitry to understand the nervous system at all levels, from ion channels to networks. Starting with a simple model of the neuron as an electrical circuit, gradually more details are added to include the effects of neuronal morphology, synapses, ion channels and intracellular signalling. The principle of abstraction is explained through chapters on simplifying models, and how simplified models can be used in networks. This theme is continued in a final chapter on modelling the development of the nervous system. Requiring an elementary background in neuroscience and some high school mathematics, this textbook is an ideal basis for a course on computational neuroscience.

Preface
1. Introduction
2. The basis of electrical activity in the neuron
3. The Hodgkin Huxley model of the action potential
4. Compartmental models
5. Models of active ion channels
6. Intracellular mechanisms
7. The synapse
8. Simplified models of neurons
9. Networks
10. The development of the nervous system
Appendix A. Resources
Appendix B. Mathematical methods
References.

'Here at last is a book that is aware of my problem, as an experimental neuroscientist, in understanding the maths ... I expect it to be as mind expanding as my involvement with its authors was over the years. I only wish I had had the whole book sooner - then my students and post-docs would have been able to understand what I was trying to say and been able to derive the critical tests of the ideas that only the rigor of the mathematical formulation of them could have generated.' Gordon W. Arbuthnott, Okinawa Institute of Science and Technology