Ion-Solid Interactions: Fundamentals and Applications (Cambridge Solid State Science Series)

Ion-Solid Interactions: Fundamentals and Applications (Cambridge Solid State Science Series)

  • £59.99
  • Save £114

Michael Nastasi, James Mayer, James K. Hirvonen
Cambridge University Press, 4/4/1996
EAN 9780521373760, ISBN10: 052137376X

Hardcover, 572 pages, 22.8 x 15.2 x 3.7 cm
Language: English

Modern technology depends on materials with precisely controlled properties. Ion beams are a favoured method to achieve controlled modification of surface and near-surface regions. In every integrated circuit production line, for example, there are ion implantation systems. In addition to integrated circuit technology, ion beams are used to modify the mechanical, tribological and chemical properties of metal, intermetallic and ceramic materials without altering their bulk properties. Ion–solid interactions are the foundation that underlies the broad application of ion beams to the modification of materials. This text is designed to cover the fundamentals and applications of ion–solid interactions and is aimed at graduate students and researchers interested in electronic devices, surface engineering, reactor and nuclear engineering and material science issues associated with metastable phase synthesis.

1. General features and fundamental concepts
2. Interatomic potentials
3. Dynamics of binary elastic collisions
4. Cross-section
5. Ion stopping
6. Ion range and range distribution
7. Radiation damage and spikes
8. Ion–solid simulations and irradiation enhanced transport
9. Sputtering
10. Order-disorder under irradiation and ion implantation metallurgy
11. Ion beam mixing
12. Phase transformations
13. Ion beam assisted deposition
14. Applications of ion beam processing techniques
15. Ion beam system features
A. Crystallography
B. Table of contents
C. Density of states
D. Derivation of the Thomas–Fermi differential equations
E. Centre-of-mass and laboratory scattering angles
F. Miedema's semi-empirical model for the enthalpy of formation in the liquid and solid state
G. Implantation metallurgy – study of equilibrium alloys.